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We present a method for performing sampling from a Boltzmann distribution of an ill-conditioned quadratic
action. This method is based on heat-bath thermalization along a set of conjugate directions, generated via a
conjugate-gradient procedure. The resulting scheme outperforms local updates for matrices with very high
condition number, since it avoids the slowing down of modes with lower eigenvalue, and has some advantages
over the global heat-bath approach, compared to which it is more stable and allows for more freedom in
devising case-specific optimizations.

DOI: 10.1103/PhysRevE.76.026707 PACS number�s�: 02.70.Tt, 02.50.Ng

A common problem in many branches of statistical
physics is the sampling of distributions of the type
p�exp�− 1

2xA=x�, where A= is a positive definite N�N matrix
and the random variable x an N-dimensional vector. Areas in
which such sampling is needed are for instance QCD �1–3�
and a recently developed linear scaling electronic structure
method �4,5�. In principle sampling p is straightforward, if
diagonalizing A= is an option. However, in many cases, N is
so large that circumventing the O�N3� diagonalization step
becomes mandatory. Different approaches have been pro-
posed. In the so-called global heat-bath method one writes
A==M=TM=, and obtains a series of statistically independent
vectors by solving the linear system M=x=R, where R is a
vector whose components are distributed according to a
Gaussian with zero mean and unit variance �R2�=1. The ad-
vantage of this method is that the algorithmic complexity of
the problem can be reduced by using an iterative solver for
the linear system. In order to expedite sampling a
Metropolis-like criterion has been suggested that leads to
correct sampling without having to bring the iterative pro-
cess to full convergence �6,7�. Unfortunately, when the ratio
between the largest and smallest eigenvalues is large �ill-
conditioned matrices�, the acceptance of this scheme drops to
zero unless full convergency is achieved. An alternative ap-
proach is the local heat-bath algorithm, in which at every
step one single component of the state vector x is thermali-
zed in turn, keeping the others fixed. It has been pointed out
elsewhere �8,9� that there is a close analogy between this
second method and the Gauss-Seidel minimization tech-
nique. This approach is relatively inexpensive, but becomes
very inefficient when the condition number of A= is large, and
even more inefficient when the observable of interest de-
pends strongly on the eigenvectors corresponding to smaller
eigenvalues.

In this paper we propose a heat-bath algorithm in which
moves are performed along mutually conjugated directions.
This choice is based on the analogy between various heat-
bath methods �see, e.g., Ref. �8�� and directional minimiza-
tion techniques. We show both analytically and numerically
that the choice of conjugate directions allows all the degrees

of freedom to become decorrelated on the same time scale,
independent of their associated eigenvalue. We also discuss
the cases in which the improved efficiency outbalances the
additional computational cost. Our method can be interpreted
as the subdivision of the global heat-bath matrix inversion
process into N intermediate steps, all of which guarantee an
exact sampling of the probability distribution.

In Sec. I we introduce a simple formalism to treat heat-
bath moves along general directions, discuss the properties
of a sweep through a set of conjugate directions, and de-
scribe a couple of algorithms to obtain such a set with rea-
sonable effort. In Sec. II we present some numerical tests on
a model action and compare the efficiency of conjugate di-
rections heat bath with local moves for a model observable.
In Sec. III we compare our method with global heat bath, and
in Sec. IV we present our conclusions.

I. COLLECTIVE MODES HEAT BATH

Given a probability distribution

P�x� � exp�− �1

2
xA=x − b · x	
 , �1�

a generic heat-bath algorithm can be described as a stochas-
tic process in which the vector x�t+1� is related to the vector
at the previous step x�t� by

x�t + 1� = x�t� + �d , �2�

where d is a direction in the x space and

� = −
d�A=x − b�

dA=d
+ �dA=d�−1/2R , �3�

where R is a Gaussian random number with zero mean and
unitary spread �R2�=1. The application of this algorithm
does not require inversion of the matrix A=. The sequence of
directions d is rather arbitrary, and could be a random se-
quence or a predefined deterministic sequence. Strictly
speaking, detailed balance is satisfied only if the directions
are randomly chosen at each step. Nevertheless it has been
shown in Ref. �10� that correct sampling can be achieved if
every Monte Carlo move leaves the equilibrium distribution*michele.ceriotti@phys.chem.ethz.ch
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unchanged. In Appendix A we show that this is the case,
provided that direction d is chosen independently from posi-
tion x. Nevertheless, different choices of directions can lead
to different sampling efficiency. Our final choice will be to
select for d a sequence of conjugate directions �Sec. I A�.
However, we shall first analyze the choice of random, uncor-
related directions, and a sequential sweep along a set of or-
thogonal directions.

For the sake of simplicity, we take b=0 and we choose
the basis into which A= is diagonal, Aij =ai�ij. Since these
properties are subsequently never used, no loss of generality
is implied. To compare the efficiency of the different choices
of directions we shall consider the autocorrelation matrix for
the components along the eigenmodes �xi�0�xj�t��. A quanti-
tative measure of the speed of decorrelation of �xi�0�xj�t��
can be obtained from its slope at the origin. Since in Monte
Carlo one progresses in discrete steps, this quantity is given
by

�xi�0�xj�1�� = ��xi�0�2��xj�0�2���ij − �ij�d�� . �4�

In Eq. �4� we have introduced the normalized slope tensor �=,
which can be expressed as a function of the eigenvalues of A=
and of the components of d, using Eqs. �2� and �3�:

�ij�d� =
aihihj

�
k

akhk
2

�xi�0�2�
��xi�0�2��xj�0�2�

=
�aiajdidj

�
k

akdk
2

. �5�

Therefore, depending on the choice of direction d, the dif-
ferent components of the vector x decorrelate at different
speeds. However, since Tr �==1, the sum of these normalized
speeds does not depend on the direction chosen. The same
quantity �= also enters a recursion relation for the autocorre-
lation functions at a generic Monte Carlo step t,

�xi�0�xj�t + 1�� = �xi�0�xj�t�� − �
k
��xi�0�xk�t���ak

aj
�kj�d�
 .

�6�

Use of this equation requires that one appropriately averages
over the direction d, as we shall discuss in the following.

We will begin our analysis from the simpler case, in
which the direction d is chosen at every step to be equal to a
stochastic vector R, whose components are distributed as
Gaussian random numbers with zero mean and standard de-
viation one. The normalized slope tensor �5� in this case
results from an average over the possible directions,

��ij�d = R�� = ai�ij Ri
2

�
k

akRk
2� �

N→� ai�ij

Tr A=
. �7�

The limit expression holds for the size N of the matrix going
to infinity �see Appendix B�, under the hypothesis that the
largest eigenvalue of A= does not grow with N and that Tr A=
is O�N�, hypotheses which are relevant to many physical
problems. Since in this case the direction chosen at every
step is independent of all the previous choices, the same
average enters Eq. �6� at any time, so that proceeding by

induction one can easily obtain the entire autocorrelation
function,

�xi�0�xj�t�� = �ij�xi�0�2��1 − ��ij��t, �8�

where ��ij� is the quantity obtained in Eq. �7�. From Eq. �8�
we can calculate the autocorrelation time for mode i,

�i =

�
t=0

�

�xi�0�xi�t��

�xi
2�

=�ai Ri
2

�
k

akRk
2�
−1

�
N→�Tr A=

ai
.

In the case of large N, the decorrelation speed of the compo-
nents along normal modes is directly proportional to the cor-
responding eigenvalue, so that in ill-conditioned cases a criti-
cal slowing down for the softer normal modes will be
present.

Let us now consider moves along a predefined set of or-
thogonal directions �u�m��m=0. . .N−1. This is done to mimic the
case in which one performs a sweep along Cartesian direc-
tions. In our reference frame, where A= is taken to be diago-
nal, this would be trivial, hence the choice of an arbitrarily
oriented set of orthogonal directions. As in standard local
heat bath, the outcome will depend on the orientation of the
�u�m�� relative to the eigenvectors of A=. Averaging over all
the possible choices of initial direction, we find the slope at
t=0,

��ij� =
1

N
�
m

�ij�u�m�� =
1

N
�
m

�aiajui
�m�uj

�m�

�
k

akuk
�m�2

. �9�

Obviously, it is not possible to reduce this result to an ex-
pression which does not depend on the particular set of or-
thogonal directions. However, the following inequality holds

ai�ij

Namax
� ��ij� �

ai�ij

Namin
. �10�

Equation �10� does not put rigid constraints on the value of
��ij�, but demonstrates that also in this case �= is diagonal
and suggests that in real life the convergence will be faster
for the higher eigenvalues, and that the spread in the relax-
ation speed for different modes is larger when the condition
number �=amax /amin is higher.

In the case where directions �u�m�� are swept sequentially
we have not been able to derive a closed expression for
�xi�0�xj�t�� because of the dependence of d�t� on the previous
history. If, on the other hand, a random direction is drawn
from �u�m�� at every step, �xi�0�xj�t�� is given by expression
�8� where ��ij� has the value in Eq. �9�.

A. Moves along conjugate directions

It is clear from Eq. �8� that a random choice of the direc-
tions d leads to fast decorrelation of the components relative
to the eigenvectors with high eigenvalues. On the other hand,
the components relative to the eigenvectors with low eigen-
values will decorrelate more slowly. Similar behavior is ex-
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pected for the local heat-bath method, unless particular rela-
tions hold between the eigenvectors and the Cartesian axes.
If the operator A= is ill conditioned, the practical consequence
is that the slow modes will be accurately sampled only after
a very large number of steps. As we have already discussed,
the sum of the decorrelation slopes of the different compo-
nents does not depend on the choice of the directions d.
However, with a proper choice of the directions d this sum
could be spread in a uniform way among the different
modes. A similar problem arises in minimization algorithms
based on directional search, and is often solved choosing a
sequence of conjugated directions �11�. In the same spirit, we
can compute the decorrelation speed of the different modes
when the d’s are chosen to be conjugated directions. Let us
consider a set of conjugated directions �h�i��, such that
h�i�A=h�j�=�ij. The set �h�i�� can be generated with various
algorithms, such as a Gram-Schmidt orthogonalization that
uses the positive definite A= matrix as a metric, or a conjugate
gradient procedure, as described in Sec. I B.

Using the fact that �khi
�k�hj

�k�=ai
−1�ij, the slope at t=0 is

��ij� =
1

N
�
m

�aiajhi
�m�hj

�m�

h�m�A=h�m�

=
1

N
�aj

ai
�
m

aihi
�m�hj

�m�

h�m�A=h�m� =
�ij

N
.

With this choice, the decorrelation slopes of the different
modes are independent of the eigenvalue. If one chooses one
conjugate direction at random at each step it is straightfor-
ward to show that overall the autocorrelation function decays
exponentially as

�xi�0�xj�t�� = �ij�xi�0�2��1 −
1

N

t

.

This derivation shows that if matrix A= is ill conditioned
and one wishes to decorrelate the slow modes, then the
choice of performing the heat bath using a sequence of con-
jugated directions can improve the sampling quality dramati-
cally. Of course, the slow modes are accelerated and the fast
modes are decelerated. However, it is clear that a completely
independent vector x is obtained only when all the modes are
decorrelated. A heat bath on conjugate directions allows all
the modes to be decorrelated with the same efficiency, irre-
spective of their stiffness. Even better efficiency can be ob-
tained by sequentially sweeping a set of conjugated direc-
tions. At first sight it would appear that the dependence of
h�t� on h�t−1� would make it very difficult if not impossible
to obtain the autocorrelation function in a closed form. How-
ever, conjugate directions have a redeeming feature. If we
expand the position vector on the nonorthogonal basis �h�m��,
x=�i	

ih�i�, and we evaluate the correlation matrix between
the contravariant components 	i, we find that �	i	 j�=�ij.
This property can be easily demonstrated taking into account
that the ensemble average �xixj�=Aij

−1, and that conjugacy
implies h�i�A=h�j�=�ij. Thus, effectively, every time we per-
form a heat-bath move along direction h�i� the component 	i

is randomized, without affecting the others. After a complete
sweep across the set of directions a completely independent
state is obtained.

A more formal proof is provided in Appendix C, where it
is also demonstrated that the autocorrelation function is

�xi�0�xi�t�� = �xi�0�2� � ��1 −
t

N

 , t 
 N ,

0, t � N .
� �11�

Therefore the corresponding autocorrelation time is �i= �N
+1� /2. A remarkable feature of Eq. �11� is that the autocor-
relation function is linear, and that after N moves a com-
pletely independent vector is obtained. This property holds
also for the global heat-bath method. In Sec. III we shall
discuss the relation between our approach and global heat-
bath sampling.

B. Conjugate-gradient approach to generate
conjugate directions

In the last section we have shown how a heat-bath algo-
rithm based on conjugate directions can dramatically im-
prove the sampling of the slow modes for an ill-conditioned
action. An efficient strategy to generate these directions is
the application of the conjugate gradient procedure �11�. For
the sake of completeness and to introduce a consistent nota-
tion we give here an outline of the conjugate-gradient �CG�
algorithm. One starts from a random configuration and
search direction, h�0�=g�0�=R, so that the directions obtained
and the sample vector x are independent as required. Then, a
series of directions h�m� and residuals g�m� are generated us-
ing the recurrence relations

g�i+1� = g�i� − �iA= · h�i�, h�i+1� = g�i+1� + i · h�i�,

�i =
g�i� · g�i�

h�i�A=h�i� , i =
g�i+1� · g�i+1�

g�i� · g�i� .

This procedure generates at every step a new direction h�i�,
conjugated to all the previous ones, and it can be used to
perform a directional heat-bath move on x. It should be
stressed that there is no need to store all the h�i� if the heat-
bath moves are performed concurrently with the CG minimi-
zation. The “force” A=h�i� can be reused for performing the
heat-bath update �cf. Eq. �2��. At a certain point the CG
procedure will be over, with the residual g dropping to zero.
The sequential sweep algorithm described into the previous
section can be implemented starting again from the same
g�0�.

In contrast to the global heat-bath method, numerical sta-
bility is not a major issue, since the accuracy of the sampling
does not depend on the search directions being exactly con-
jugated. The only effect of imperfect conjugation would be
to slightly reduce the decorrelation efficiency. There is, how-
ever, a drawback to this approach. In order to be ergodic, the
set of directions must span the whole space. The problem
arises when there are degenerate eigenvalues, as CG con-
verges to zero in a number p of iterations equal to the num-
ber of distinct eigenvalues. If we keep reusing the same set
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of p
N directions, only a part of the subspaces correspond-
ing to degenerate eigenvalues will be explored, and the sam-
pling will not be ergodic.

We have considered two possible ways of recovering er-
godicity. The simplest consists in drawing a different random
point g�0�=R every time we reset the CG search. This causes
a deviation from the linear behavior of the autocorrelation
functions for t�N. Nondegenerate eigenvalues will initially
converge with −1/ p instead of −1/N slope, but degenerate
ones will converge more slowly, and with exponential trend,
as we are sampling random directions within every degener-
ate subspace.

In order to improve the efficiency, we mix CG with Gram-
Schmidt orthogonalization of a small set of vectors, ideally
of the same size d of the largest degeneracy present. As
discussed earlier, here Gram-Schmidt orthogonalization has
to be performed using the metric of A=, which amounts to
imposing conjugacy. The procedure is illustrated in Fig. 1.
We start from d random vectors, �v�j�� j=0..d−1. We set h�0�

=g�0�=v�0� and begin a CG minimization. At each step we
obtain a search direction h�i�, and make each of the other d
−1 vectors conjugate to h�i� with a Gram-Schmidt procedure.
This does not require any matrix-vector product other than
the one necessary for the heat-bath step. After p iterations the
conjugate gradient will have converged and g will be close to
zero. We can start again from the second vector in the pool,
which meanwhile has become v̄�1�, and is conjugate to all the
directions visited so far. Thus, we set h�0�=g�0�= v̄�1� and start
again the CG procedure, orthogonalizing the d−2 remaining
vectors to h�i�, and so on and so forth. After N steps the
procedure will be converged. At the successive sweep, one
can generate again a set of random initial �v�j��. This can

make the method more stable, at the cost of some loss in
performance. Some savings can be made if one stores the
conjugated v̄�i�, and uses them in the subsequent sweeps,
avoiding the need to repeat the GS orthogonalizations �see
Fig. 1�. In practice, where more than one complete sweep is
affordable, it is easy to devise adaptive variations of this
scheme, in which the pool of vectors �v�j�� is enlarged when-
ever the CG minimization converges in less than N steps, so
that in a few sweeps the optimal size to guarantee ergodicity
is attained.

II. BENCHMARKS AND COMPARISON
WITH LOCAL HEAT BATH

In the previous section we have discussed a collective
modes heat-bath method that could outperform standard lo-
cal heat-bath techniques when the Hamiltonian has a very
large condition number and sampling along the slower eigen-
modes is required. In this section we illustrate the efficiency
of our algorithm using numerical experiments on a simple
model for A=,

A= = 1= +�
− 2b b 0 ¯ 0 b

b − 2b b 0 ¯ 0

0 b − 2b b � �
� 0 b − 2b � 0

0 � � � � b

b 0 ¯ 0 b − 2b

� . �12�

This matrix corresponds to the dynamical matrix of a linear
chain of spring-connected masses, with periodic boundary
conditions and an additional diagonal term to make the
acoustic mode nonzero. b can be chosen so as to obtain the
desired condition number. Eigenmodes and eigenvalues for
such a matrix are easily obtained,

ak = 1 + 2b�1 − cos
2k�

N
	 ,

ul
�k� =�1 + �0k + �N/2,k

N
� �cos

2kl�

N
, k � N/2,

sin
2kl�

N
, k � N/2,

and projection of a state on the eigenvectors is quickly done
via fast-Fourier transform. In Fig. 2 we compare the autocor-
relation functions obtained with different algorithms for a
matrix of the form �12�. Figure 2 also highlights the ergod-
icity problems connected with the naive use of the conjugate
gradient algorithm to generate the search directions, and
shows how both the suggestions of Sec. I B can help in solv-
ing this problem. In general, a conjugate directions search
speeds up decorrelation for the slower modes, but is less
efficient than local heat bath for the modes with a high ei-
genvalue. This is a direct consequence of the fact that Tr �=
=1. An additional advantage of our method is the linear rate
of decorrelation, which allows complete decorrelation just
like the direct inversion of M=, whereas moves along the Car-

FIG. 1. �Color online� Scheme of the block algorithm described
in Sec. I B; squares represent eigenvectors of the action matrix,
which need to be refreshed in order to obtain a statistically inde-
pendent sample point; modes on the same column correspond to the
same, degenerate eigenvalue. At every step, one of the vectors of a
set with the same size as the biggest degenerate subspace is used in
a conjugate gradient minimization, while the remaining ones are
made orthogonal to the search directions that are generated in the
process. When the first vector approaches zero, one can start back
on the second one ��b�, and the process can be continued �c� and
�d�� until the refresh is complete.
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tesian axes lead to approximatively exponential autocorrela-
tion functions.

We stress again that the relative efficiency of the two
methods depends strongly on the observable being calculated
and on the actual spectrum of the Hamiltonian of the system.
As a more realistic benchmark we will consider the evalua-
tion of the trace of the inverse matrix, i.e.,

� = Tr�A=−1� = �x2� . �13�

This observable is strongly dependent on the slow modes.
In Fig. 3 we plot the ratios of the autocorrelation times

� ��� as obtained with local heat-bath moves and with the
block conjugate gradient version of our algorithm, as a func-
tion of changing condition number and system size.

III. COMPARISON WITH GLOBAL HEAT BATH

It remains for us to discuss how our method fares in com-
parison with global heat bath. The latter requires that matrix

A= be decomposable in the form A==M=TM=. This is the case in
many fields �4�, but in principle if it were necessary to de-
compose A= this would add extra cost. Here we make our
comparison assuming that M= is already available. In such a
case, the two algorithms are on paper equally efficient in
producing statistically independent samples. The global heat
bath might offer some numerical advantages when the spec-
trum of M= is highly degenerate, since the number of CG
iterations needed to solve the M=x=R linear system is p
N,
as discussed earlier. Whenever a good preconditioner for the
linear system is available, other inversion algorithms such as
the stabilized biconjugate gradient �12� or the generalized
conjugate residual may allow to solve the linear system with
a sufficient accuracy more efficiently than using CG. In this
paper we make the comparison with conjugate gradient be-
cause of the close analogy with our scheme and because our
method is aimed at problems where ill conditioning cannot
be otherwise relieved.

In this respect, our method displays significant advan-
tages. First, it is more stable, because every move preserves
the probability distribution, and the conjugate gradient pro-
cedure �which is known to be quite delicate in problems with
large condition number� is only used to generate search di-
rections. Instabilities in the procedure, which would cause
incorrect sampling in the global heat bath, affect only the
efficiency, and not the accuracy. Moreover, dividing the N
steps of an iterative inversion process into separate heat-bath
moves greatly improves the flexibility of the sampling
scheme. To give some examples, if one needs to perform an
average on a slowly varying A=, it is possible to perform only
a partial sweep with fixed action, then continue with the new
A=, assuming that eigenmodes will change slowly. It is also
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FIG. 2. Autocorrelation functions for �a� the projection along
the mode a0=1; �b� the projection along the mode a4�9.8 for a
matrix of the form �12� with N=100 and condition number �=103.
Line A corresponds to local heat-bath moves �one step stands for a
complete sweep of the N coordinates�, lines B to D to conjugate
direction moves: B is the hybrid conjugate gradient–Gram-Schmidt
block algorithm; C corresponds to CG sweeps, with the search di-
rection randomized at the beginning of every sweep; curve D cor-
responds to CG sweeps starting from the same initial vector. Con-
jugate direction moves decorrelate faster than local heat bath for the
slow mode, but are less efficient for modes with higher eigenvalue.
For degenerate eigenmodes, the method used for curve D is not
ergodic �and thus gives incorrect values for �xi

2��, and random re-
starts �curve C� are much less efficient than the hybrid �curve B�
algorithm.
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FIG. 3. �Color online� Comparison of the efficiency of local heat
bath versus conjugate-gradient moves. The graph represents
�CG/�loc, the ratio of the autocorrelation times for the observable �
�13�; �loc corresponds to the value obtained from standard local
heat-bath moves �one unit of Monte Carlo time corresponds to a
whole coordinates sweep�, while �CG corresponds to the value ob-
tained with moves along conjugate directions, as obtained from our
block algorithm with random restarts. The data plotted results from
a linear interpolation of some simulations �labeled by �� performed
for an action of the form �12�, with varying size N and condition
number �.
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straightforward to tailor the choice of directions in order to
optimize the convergence speed for the observable or inter-
est. Adler’s overrelaxation �13� can be included naturally,
and can help in further optimizing the autocorrelation time.
As an example of possible fine tunings, let us recall the ob-
servable � introduced in the previous section �Eq. �13��.
This observable depends strongly on the softer eigenvector
of A=. We have then modified our algorithm in the following
way: we perform block conjugate gradient sweeps, with ran-
dom resets, and we monitor the curvature along the direction
being thermalized, hA=h /h ·h. We save the direction of mini-
mum curvature encountered along the sweep, hmin; during
the following sweep, every m moves along the CG direc-
tions, one move is performed along hmin. As is evident from
Fig. 4, this trick considerably reduces the autocorrelation
time for �. Even smarter combinations of moves can be
devised, and the one we suggest is just an example of how
the additional flexibility gained through subdividing the in-
version process in N exact sampling moves can be exploited.
In Table I we report some numerical estimates of the error in
the evaluation or �, which can serve as a reference to com-
pare our method to other approaches.

IV. CONCLUSIONS

We have presented an algorithm for performing collective
modes heat bath along conjugate directions for a quadratic
action, which allows the components of the sampling vector
along all modes to be decorrelated in N steps, with a linear
decay to zero. This method is more computationally demand-
ing than local updates, but becomes competitive for ill-
conditioned actions, when one needs to compute observables
which depend on modes with low eigenvalues, or when the
spectrum of the action matrix has only a few high eigenvalue
modes which would slow down Cartesian moves. In fact, this
method has an efficiency comparable with that of direct in-
version of the matrix, but presents various advantages, such
as improved stability, as the numerical issues connected with
conjugate gradient method do not affect the accuracy of the

sampling, and the possibility of exploiting some additional
flexibility to improve the sampling on a case-by-case basis.
Lastly, global heat bath requires the knowledge of the square
root of the action A=, so our scheme should be considered
whenever the square root is difficult to compute or its use is
inefficient with respect to the original action.

The geometrical simplicity of this approach, with its close
analogy with minimization methods, also suggests that it
might be extended to the sampling of anharmonic systems.
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APPENDIX A

We report here a simple demonstration of the fact that
heat-bath moves along a generic direction d leave an equi-
librium probability distribution unchanged. We will use the
fact that if R, R�, and R� are vectors distributed as Gaussians
with zero mean and standard deviation one, then B=R+C=R� is
distributed as D=R�, where D=TD==B=TB=+C=TC=. Since x is
drawn from the equilibrium distribution, i.e., x=M=−1R, we
can cast Eqs. �2� and �3� into the form

xj� = �
m

PjmRm + �
m

QjmRm� ,

Pjm = �M=−1� jm − dj�
k

Mkmdk, Qjm = dj�m0,

where we have put b=0 into Eq. �3� and normalized the
direction so that dA=d=1 in order to simplify the notation.
We can then compute

0 100 200 300 400
t �steps�

0

0.5

1

1.5

2
�
�
�0
��
�t
��

A

B

C

FIG. 4. Autocorrelation function for the observable �13� for an
action of the form �12�, with size N=100 and condition number �
=5�103. Line A corresponds to local heat bath, line B to the “hy-
brid” versions of our CG algorithm, with a pool of two vectors with
random restarts, while curve C is obtained including the tricks de-
scribed in Sec. III with m=5.

TABLE I. Percentual errors in the evaluation of �= �x2� �Eq.
�13��, estimated using a blocking analysis, for different sampling
methods. A corresponds to local heat bath, B corresponds to “hy-
brid” versions of our CG algorithm, with a pool of two vectors with
random restarts, while curve C is obtained including the tricks de-
scribed in Sec. III with m=50. Different tests are performed with
varying matrix size N, number of sampling steps T, and condition
number �. Due to the large autocorrelation time, the values of the
error for local heat bath with N=100 and T=106 could not be esti-
mated as reliably as in the other cases, and are only indicative.

N � T A B C

103 5�104 106 4.0 1.5 1.4

103 5�104 107 1.3 0.51 0.45

103 5�103 106 0.78 0.85 0.85

103 5�103 107 0.24 0.28 0.28

100 5�104 106 �11 1.2 1.1

100 5�104 107 4.9 0.44 0.34

100 5�103 106 �3 0.88 0.82

100 5�103 107 1.1 0.30 0.25
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�
m

PjmPlm = A= jl
−1 − djdl, �

m

QjmQlm = djdl,

so that P=TP=+Q
=

TQ
=

= �M=−1�TM=−1, i.e., also x� may be written
as M=−1R, and is therefore correctly distributed.

APPENDIX B

We shall discuss here briefly the derivation of the
asymptotic form of Eq. �7� when the size N of the action
matrix tends to infinity. The quantity to be computed is

Qi = Ri
2

�
k

akRk
2� �� dx

xi
2

�
k

xk
2ak

exp�−
1

2�
k

xk
2
 .

The integral can be transformed as follows:

Qi � �
0

�

dt� dxxi
2 exp�−

1

2�
k

�1 + akt�xk
2


= �
0

�

dt
1

ait + 1�
k

1
�akt + 1

,

and the resulting expression, including the correct normaliza-
tion, is

Qi =
1

2
�

0

�

dt
1

ait + 1
f�t�, f�t� = �

k

1
�akt + 1

. �B1�

Let us focus on F=�0
�f�t�dt, since all the Qi’s can be com-

puted as Qi=ai
�F
�ai

+ 1
2F. We perform the change of variables

Nt→ t, so that

�
0

�

f�t�dt =
1

N
�

0

�

f̃�t�dt, f̃�t� = �
k

1

�ak

N
t + 1

.

Under the physically reasonable assumption that Tr A=
=O�N�, and that the maximum eigenvalue does not scale
with the system size, we can use 1/N as a small parameter.

Expanding ln f̃ one finds

ln f̃�t� = �
k

ln�1 +
ak

N
t	 = �

n=1

tn

n + 1�
k
�ak

N

n

= �
k

ak

N

t

2
+ �

n=1
tn+1O� 1

Nn	 .

All but the leading term become negligible for N→�. This

suggests separating out from f̃�t� the term order zero in 1/N,
and writing for F the expression

1

N
�

0

�

exp�− t

2

Tr A=

N
	�1 +

1

4�
k
�ak

N
	2

t2 + O� 1

N2	t3 + ¯
dt ,

�B2�

which leads to the asymptotic result F= 2
Tr A= +O�N−2�. Corre-

spondingly, dropping the higher order terms in 1/N, we have

Qi=
1

Tr A= +O�N−2�, which is the desired result.

APPENDIX C

We obtain here the autocorrelation function for the com-
ponents along the eigenmodes of the action matrix A=, when
performing heat-bath sweeps along a set of conjugate direc-
tions �h�m��m=0. . .N−1. In this section, the indices of the direc-
tions are defined modulo N, i.e., h�j+N�=h�j�. In this case, one
can write Eq. �6� as

�xi�0�xi�t + 1�� = �xi�0�xi�t��

−
1

N
�
m

�
k
��xi�0�xk�t���ak

ai
�ki�h�m��	 .

�C1�

Explicit calculations for small values of t suggest for t
N
the ansatz

�xi�0�xi�t�� = �xi�0�2��1 −
t

N
	 . �C2�

Since the first term in Eq. �C1� does not contain the new
direction, we can substitute the ansatz without concern. On
the other hand, the second term contains reference to h�m�, so
that the average that led to Eq. �C2� cannot be performed
separately, and one should rather write

1

N
�
m

�
k
��

k�

�xi�0�xk��t − 1��

���k�k −�ak�

ak
�k�k�h�m−1��	�ak

ai
�ki�h�m��
 ,

�C3�

which is split into

1

N
�
m

�
k
��xi�0�xk�t − 1���ak

ai
�ki�h�m��	 , �C4�

1

N
�

mkk�

��xi�0�xk��t − 1���ak�

ai
�k�k�h�m−1���ki�h�m��	 .

�C5�

The term �C5� goes to zero, since

�
k

�
m

�ik�h�m−n���kj�h�m�� = �n,pN�ij ,

while Eq. �C4� can be expanded again, giving rise to the t
−2 analog and to a term containing �k�k�h�m−2���kj�h�m��.
One iterates this process recursively until it reaches �xi�0�2�,
thus contributing another −1/N to the autocorrelation func-
tion. Things are different for t�N, since terms involving
products of the slopes for the same direction will enter the
procedure at a certain point in the iteration. Because of these
terms, for t�N autocorrelation functions will be identically
zero.
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